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Mitochondria in ischemia and reperfusion

• (boring) background
• Ca2+ and permeability transition
• ROS formation
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MITOCHONDRIA AND MYOCARDIAL ISCHEMIA

• Structural and functional abnormalities of mitochondria are 
caused by ischemia/reperfusion

• Mitochondrial dysfunction might result in myocardial
protection



60 min ischemia
40 min ischemia +
20 min reperfusion

AC Shen and RB Jennings, Am.J.Pathol., 67:417-440, 1972

Calcium accumulatiom within mitochondrial matrix  of

cardiomyocytes induced by post-ischemic reperfusion in dog hearts
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anoxia

reoxygenation

adapted from Siegmund et al., Am. J. Physiol, 1991 



reoxygenation

hypercontracture

irreversible loss of

structure and function

recovery of  myocyte

morphology and function

slow

(> 5 min)

mitochondrial ATP
production

partial

Dym recovery

 cytosolic ATP
+

high [Ca2+]c

( 500nM)

 cytosolic ATP
+

low [Ca2+]c

(< 200nM)fast

(< 1 min)
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Submillimolar [ATP] results in hypercontracture, a process 
facilitated by high [Ca2+]
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The Permeability Transition Pore

The mitochondrial permeability transition (PT) defines a 
sudden increase in the permeability of the inner 
mitochondrial membrane to solutes with molecular 
masses up to 1500 Da. 

This process is attributed to the opening of a voltage-
and Ca2+-dependent, cyclosporin A (CsA)-sensitive, high-
conductance channel that is termed permeability 
transition pore (PTP) 
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C. Piot, P. Croisille, P. Staat, H. Thibault, G. Rioufol, N. Mewton, R. Elbelghiti, T. Tri Cung, E. Bonnefoy, D. 

Angoulvant, C. Macia, F. Raczka, C. Sportouch, G. Gahide, G. Finet,  X. André-Fouët, D. Revel, G. Kirkorian, J-P. 

Monassier, G. Derumeaux and M. Ovize

N Engl J Med 2008;359:473-81.
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Spectrophotometric assessments of PTP opening
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addition of high (i.e., non physiological) Ca2+
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Does CsA protection depend only on 
PTP inhibition?



Proteins (2008) 70, 1635-1639 

Red: 5 out of 5
Orange:  3 out of 4
Yellow: 2 out of 4
Green: 1 out of 4
Blue: unique   

Conserved between 

Cyp A,B,C,D,E



Does CsA protection depend also on sites other than CypD? 
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Mitochondrial dynamics

Fusion Fission

OPA1 (IMM)
Mfn 1 and 2 (OMM) Drp1
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Is Cyp-D inhibition/deletion always beneficial? 

Advantages

- Decreased susceptibility to PTP opening decreased cell death (necrosis)

Disadvantages

- Increased activity of FoF1 ATPase possible increase in ATP hydrolysis

- Inceased matrix [Ca2+] content  deranged substrate oxidation

- Decreased interaction with Bcl2 increased apoptosis
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- CyP-D binds to FOF1 ATPase
- Diplacement of CyPD by CsA increases ATP synthesis and hydrolysis
- Mitochondria lacking CyPD display a higher FOF1 ATPase activity

V. Giorgio et al., JBC 284:33982-8, 2009



Cyp-D KO mice exhibit substantially greater cardiac hypertrophy, 
fibrosis, and reduction in myocardial function in response to pressure 
overload and sustained exercise than control mice. 

The maladaptive phenotype in the hearts of Cyp-D KO mice was 
associated with an alteration in PTP-mediated Ca2+ efflux resulting in 
elevated levels of mitochondrial matrix Ca2+.

PTP appears to maintain homeostatic mitochondrial Ca2+ levels to 
match metabolism with alterations in myocardial workload.

J. Clin. Invest. 120:3680-7, 2010



CypD interacts with Bcl2 as confirmed with co-immunoprecipitation,
pulldown, and mammalian two-hybrid assays. 

Cyclosporine A, disrupts the CypD-Bcl2 interaction. 

CypD has a limiting effect on cytochrome c release from mitochondria. 
Such an effect of CypD is cyclosporine A- and Bcl2-dependent. 

Overexpression or knockdown of CypD respectively decreases or 
increases cytochrome c release from mitochondria.
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Cardioprotection afforded by CsA might be contributed by 
actions at sites other than CypD.

CypD (and PTP) inhibition is likely to be not always
beneficial.
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H2O2-dependent changes in CRC of mouse heart mitochondria



Mutation of cysteine 203 of cyclophilin D inhibits 
mPTP opening and improves cell viability

i.e., oxidation of Cys203 in CyPD is likely to be 

required for PTP opening 



M. Giorgio et al., Nat Rev Mol Cell Biol, 8:722-728, 2007





D.L Hoffman, P.S. Brookes, JBC, 284:16236–16245, 2009

16236–16245





Reviewer's argument

Experimental data showing that mitochondria from aged 
animals produce more ROS should be presented.

(weak) response

Direct evidence is not available. The increased formation 

of ROS in mitochondria from aged animals is indirectly 

supported by mtDNA oxidation, lipoperoxidation and 

increased susceptibility to ischemic damage.



matrix

inner mitochondrial

membrane

III IV
cI

PTP

O2
-.

O2
-.

p66Shc

e-

MAO

serotonin catecholamines

SOD

H2O2
SOD

aldehydes NH4
+

outer mitochondrial

membrane

intermembrane

space

NOX4



“It is noteworthy that the brain intramitochondrial [H2O2]ss obtained
during the monoamine oxidase-catalyzed oxidative deamination of
tyramine is 48-fold higher than that originating during the
oxidation of substrates via complex II of the electron transfer chain
in the presence of Antimycin A.”

Cadenas and Davies, Free Radic Biol Med. 2000 Aug;29(3-4):222-30



FAD-binding

domain

Substrate-

binding

domain Membrane

anchor

Overall Structure of Human MAO A

OMM



Advantages with studying MAO and its inhibition

• Molecular structure identified

• Specific substrates

• Clinically available inhibitors



Two isoforms: MAO A and MAO B

In rat heart mitochondria MAO A is the prevailing isoform

Substrates: MAO A, serotonine, norepinephrine
MAO B, dopamine
MAO and B, tyramine

Inihibitors: MAO A, Clorgyline
MAO B, Deprenyl
MAO A and B, Pargyline



Can MAO activity directly 

target mitochondrial function?



MAO activation and mitochondrial function
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Products of MAO activity and mitochondrial function
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ISCHEMIA
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N. Kaludercic et al., Circ Res 2010
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Mitochondria (by means of MAO) 
amplify ROS formation



DOXORUBICIN administration

Increased mitochondrial
ROS generation and/or

decreased mitochondrial antioxidant defenses

Redox cycling by means 
of interaction with complex I

Mitochondrial localization
and accumulation
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Doxorubicin-induced increase in mitochondrial ROS 
formation monitored by means of mitoHyPer.
Protective effect by MAO inhibition (pargyline)

- pargyline + pargyline



H2O2 addition
(mM)

H2O2-induced loss of viability of HL-1 cardiomyocytes
is amplified by doxorubicin

in a process blunted by MAO inhibition
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DETECTABLE PARAMETERS OF MITOCHONDRIAL FUNCTION

ISOLATED
MITOCHONDRIA

Oxygen consumption
ATP synthesis
Redox changes (NAD and FAD)
DYm (quantitative)
Matrix volume
Ion movements

ISOLATED
CELLS

Oxygen consumption
Redox changes (NAD and FAD)
DYm (semiquantitative)
Matrix volume

Ion movements

ISOLATED
HEART

Oxygen consumption
ATP content

IN SITU
HEART

Oxygen consumption
ATP content



METHODS FOR DETECTING THE OPENING OF THE 
MITOCHONDRIAL PERMEABILITY TRANSITION PORE (PTP)

ISOLATED
MITOCHONDRIA

Swelling
Ca2+ retention capacity (CRC)
Permeability to solutes
CsA inhibitable changes

ISOLATED
CELLS

Calcein redistribution
Swelling

CsA inhibitable changes

INTACT
HEART

Mitochondrial NAD depletion
Mitochondrial accumulation of deoxyglucose
CsA inhibitable changes



Calcein - Co2+

Calcein

Calcein loading in the 
absence of Co2+

Co2+ addition to calcein 
loaded cells

ColoadingCo2+ addition after calcein loading



• Short PTP openings are detected only by trapped

calcein and may have little impact on cell viability, 

while changes of TMRM distribution require longer

PTP openings, which cause release of cytochrome c 

and may result in cell death. 

• Modulation of PTP open time appears to be a key 

element in determining the outcome of stimuli that

converge on the PTP.

Petronilli et al., J. Biol. Chem. 276:12030-4, 2001
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ischemia/reperfusion
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Relationships between [Ca2+]i increase
and increased ROS formation in mitochondria

[Ca2+] ROS

cyt. c 
displacement

binding to
cardiolipin

NOS NO Complex IV
inhibition

TCA cycle e- supply 
to ETC

GSH reductase
inhibition [GSH]

Complex I
inhibition

PTP opening cyt. c release

ETC
inhibition

adapted from P.S. Brookes et al., Am J Physiol 287:C817-C833, 2004



PTP opening

OXIDATIVE STRESS IS UPTREAM  AND DOWNSTREAM OF PTP OPENING

Amplification loops linking [Ca2+]m with ROS formation and PTP opening

respiratory
chain inhibition

cyt. c release

ROS formation

Dym decrease

cardiolipin
oxidation

binding to
IP3R

loss of Ca2+

autoinhibition

increased [Ca2+]m

increased ER
release of Ca2+

NAD
release
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